Orthorectified and Principal Component RADARSAT-1 Image Dataset for NTS 74L, Alberta
Orthorectified and Principal Component RADARSAT-1 Image Dataset for NTS 74L, Alberta

Shilong Mei
Alberta Geological Survey

February 2004
Contents

Acknowledgments.. iv
Abstract .. v
1 Introduction... 1
2 RADARSAT-1 Standard Beam Mode Images.. 1
3 Processes for Acquisition of the Orthorectified and Principal Component
 RADARSAT-1 Images for NTS 74L .. 3
 3.1 Original RADARSAT-1 Standard Beam Mode Images ... 3
 3.2 Orthorectification Process .. 7
 3.3 Mosaic (Tiling) Process ... 8
 3.4 Principal Component Analysis .. 9
 3.5 Additional Resampled Images and Maps ... 10
4 Conclusion .. 10
5 References... 10

Tables
Table 1 List of the Path Images that Overlay NTS 74L .. 5

Figures
Figure 1 RADARSAT-1 beam modes .. 2
Figure 2 Coverage sizes and resolutions of RADARSAT-1 beam modes .. 2
Figure 3 Multi-beam configuration of RADARSAT-1 S1 and S7 ascending/descending imagery 3
Figure 4 One of the original SGF scene images used for tiling the NTS 74L dataset:
 scene MO199208 of Standard Beam Mode 1 descending ... 4
Figure 5 The scenes overlaying NTS 74L ... 6
Figure 6 One of the orthorectified scene images used for tiling the NTS 74L dataset:
 scene MO199208 of Standard Beam Mode 1 descending ... 7
Figure 7 Pseudocolour composite of orthorectified NTS 74L image dataset of Standard Beam Mode
 S1/S7 ascending/descending beam positions .. 8
Figure 8 Pseudocolour composite of NTS 74L image dataset of principal component
 PC1, PC2, PC3 and PC4... 9
Figure 9 RADARSAT-1 Standard Beam 1 Ascending Image for Fort Chipewyan (NTS 74L) 11
Figure 10 RADARSAT-1 Standard Beam 1 Descending Image for Fort Chipewyan (NTS 74L) 12
Figure 11 RADARSAT-1 Standard Beam 7 Ascending Image for Fort Chipewyan (NTS 74L) 13
Figure 12 RADARSAT-1 Standard Beam 7 Descending Image for Fort Chipewyan (NTS 74L) 14
Figure 13 RADARSAT-1 Principal Component 1 Image for Fort Chipewyan (NTS 74L) 15
Figure 14 RADARSAT-1 Principal Component 2 Image for Fort Chipewyan (NTS 74L) 16
Figure 15 RADARSAT-1 Principal Component 3 Image for Fort Chipewyan (NTS 74L) 17
Figure 16 RADARSAT-1 Principal Component 4 Image for Fort Chipewyan (NTS 74L) 18
Acknowledgments

The author wishes to acknowledge the support of the Department of Sustainable Development, Government of Alberta, for the acquisition of the RADARSAT-1 path imagery. Ken Dutchak, Gerry Mitchell and Eric Grunsky provided information on processing the RADARSAT-1 imagery. RADARSAT International (RSI) granted permission for using their figures in RADARSAT Geology Handbook (1997) and the online version of RADARSAT Illuminated (1999) to produce Figure 1 and Figure 2 herein. Alberta Geological Survey colleagues Reg Olson, Joan Waters and Gisela Hippolt-Squair are thanked for their beneficial reviews.
Abstract

This report details the acquisition, characteristics and processing of the orthorectified and principal component RADARSAT-1 images for NTS map area 74L by the Alberta Geological Survey (AGS). The acquisition of the original RADARSAT-1 scene imagery was made through a Provincial Partnership Memorandum of Understanding. Original RADARSAT-1 path images (SGF) have been purchased by Alberta Sustainable Resource Development (SRD) from RADARSAT International (RSI) and then made available to AGS, based on an agreement that AGS would pay for orthorectification of the original RADARSAT-1 imagery in exchange for obtaining the value-added imagery for public distribution.

This resulted in acquisition of coverage for all of northern Alberta (north of 55 degrees north latitude) for Standard Beam Modes S1 and S7 in both ascending and descending look directions. This imagery is available at a nominal resolution of 12.5 m. Two hundred and fifty scenes have been orthorectified and, in total, cover northern Alberta (north of 55 degrees north latitude) in the four beam positions. They were tiled to 25 1:250 000 scale NTS map areas. The image file for each NTS map area contains four layers to accommodate four images from the four beam positions. These four layers were then used for principal component analysis to produce an image file for each NTS map area containing four layers holding PC1, PC2, PC3 and PC4 images. The orthorectified and principal component RADARSAT-1 dataset for NTS map area 74L is one of the 25 NTS-tiled products to be delivered to the public by AGS. It will permit users to further process and interpret the RADARSAT-1 data to obtain geoscience, environmental, forestry or other information.
1 Introduction
The Government of Alberta participated in a RADARSAT-1 pre-launch agreement that permitted the acquisition of radar imagery at a significantly reduced price. The acquisition of the RADARSAT-1 imagery was made through a Provincial Partnership Memorandum of Understanding that offered participating provinces a price of $609 CDN per scene. This agreement tested the application of RADARSAT-1 satellite imagery for agricultural, mapping and natural resources management. Alberta Sustainable Resource Development (SRD) and the Alberta Geological Survey (AGS) participated in this agreement, and they agreed to a satellite image acquisition plan in 1999. The funding of the original RADARSAT-1 path images (SGF) was covered and managed by SRD, and it was agreed AGS would pay for orthorectification of the original RADARSAT-1 imagery in exchange for its use. AGS agreed to provide a complete set of orthorectified imagery to SRD in return. The RADARSAT-1 imagery was obtained from September to December 1999. A total of 274 scenes of RADARSAT-1 standard beam modes S1 and S7 were captured for both ascending and descending passes, covering all of northern Alberta (north of 55 degrees north latitude). This number was mistakenly reported as 280 scenes in previous reports (Grunsky, 2002a, 2002b, 2002c), due to 6 duplicate records of scenes that were found afterwards. Two hundred and fifty of the 274 scenes were orthorectified and then tiled to 25 NTS map areas (Grunsky, 2002a). The other 24 scenes were not orthorectified because they are peripheral complementary images. The image file for each NTS map area contains four layers to accommodate four images from the four beam positions. These four layers were then used for principal component analysis (PCA) to produce an image file for each NTS map area, which contains four layers with PC1, PC2, PC3 and PC4 images. Each of the four principal components of the 25 tiled NTS areas was then assembled to produce the northern Alberta mosaic of principal component images (Grunsky, 2002b). All of these value-added images are made available to the public by AGS. A detailed documentation of the acquisition and availability of these images is provided by Grunsky (2002a).

The RADARSAT-1 satellite is an active, microwave-based sensor that sends its own microwave signals down to the Earth and processes the signals it receives back. It differs from optical sensors, such as LANDSAT TM and SPOT, which are referred to as passive systems. Since the optical sensors collect data at frequencies of visible and infrared, they rely on sunlight reflected off the Earth and, as a result, are unable to collect data in darkness or poor atmospheric conditions, such as cloud cover, fog, dust, hail or smoke. RADARSAT-1’s longer microwave wavelength is better suited for atmospheric penetration and can collect data regardless of the Earth’s atmospheric conditions. The radar backscatter qualities are directly related to ground topography, dielectric properties and surface roughness of the terrain being imaged. As a result, RADARSAT-1 images are complementary to optical satellite images. In addition, radar can acquire multiple images to provide stereoscopic viewing.

The imagery obtained by AGS has great potential in geological studies when combined with other satellite images and existing geological data. September to December 1999, when the imagery was obtained, was a dry autumn and, thus, provided ideal conditions of no deciduous foliage and no snow. The four combinations of varying incidence angles and look directions provided four additional dimensions for highlighting differences in geomorphology, surficial and structural features and drainage. For example, Grunsky (2002c) applied the principal component images for land cover and terrain mapping, and Paganelli et al. (2003) used them for structural mapping in a portion of the northern Buffalo Head Hills area. This report describes the acquisition, characteristics and processing of the orthorectified and principal component RADARSAT-1 image dataset for NTS 74L.

2 RADARSAT-1 Standard Beam Mode Images
RADARSAT-1 was launched on November 4, 1995, as a result of a joint venture between the Canadian government, private industry and NASA (RADARSAT International (RSI), 1999). As Canada’s first
Earth observation satellite, and the world’s first operationally-oriented radar sensor, it provides complete global coverage with the satellite’s orbit repeated every 24 days. The Arctic is imaged daily, whereas equatorial areas achieve complete coverage approximately every five days. It differs from research-oriented radar sensors, such as ERS and JERS-1, as it is the first radar sensor totally dedicated to operational applications, and it offers a variety of beam modes to meet requirements for the particular application at hand. It uses a single frequency C-Band (5.3 Ghz frequency or 5.6 cm wavelength) and has the ability to send and receive this microwave energy at a number of spatial resolutions and different incidence angles over a 500-kilometre range. RADARSAT-1’s side-looking geometry greatly enhances subtle topographic features that aid in the interpretation of lineaments (RADARSAT International (RSI), 1997). RADARSAT-1 offers 35 beam positions with a viewing angle range of 10 to 60 degrees (Figure 1). The spatial resolution can vary from 8 m to 100 m (Figure 2). As a result, the RADARSAT-1 satellite is programmable so various beam modes and resolutions can be changed according to requirements.
The orthorectified and principal component RADARSAT-1 image datasets for NTS 74L contain images from two beam modes and four beam positions: Standard Beam Mode 1 ascending, Standard Beam Mode 1 descending, Standard Beam Mode 7 ascending and Standard Beam Mode 7 descending (Figure 3). It also includes four principal component images (PC1, PC2, PC3 and PC4) derived from them.

Figure 3. Multi-beam configuration of RADARSAT-1 S1 and S7 ascending/descending imagery (after Grunsky, 2002a).

3 Processes for Acquisition of the Orthorectified and Principal Component RADARSAT-1 Images for NTS 74L

The RADARSAT-1 image orthorectification, mosaic and principal component analysis were carried out by Resource GIS and Imaging Ltd. (RGI) using processing methods and software developed by RGI and proprietary to RGI. Their software and processes run within the ER Mapper processing environment.

The processes for producing the orthorectified and principal component RADARSAT-1 Image dataset for NTS 74L are:

- acquisition of the original RADARSAT-1 Standard Beam Mode path images
- orthorectification of the path images
- mosaicking of the orthorectified scene images to NTS map areas; and
- principal component analysis of the tiled NTS map area images.

Following are detailed descriptions of the original input data and steps to produce the orthorectified and principal component RADARSAT-1 images for NTS 74L.

3.1 Original RADARSAT-1 Standard Beam Mode Images

The original RADARSAT-1 image data are the path images (SGF) and have been converted to ground range and are multi-look processed. Each Standard Beam image is a composite of four looks. This composite increases the signal-to-noise ratio at the expense of the spatial resolution. The imagery is provided at a nominal resolution of 12.5 m (close to the single look spatial resolution), although the true spatial resolution of the averaged four-look image is closer to 25 m. The image is calibrated, but remains
oriented in the direction of the orbit path. The image is sampled in unsigned, 16-bit integer format and written in Committee of Earth Observation Satellites (CEOS) standard format. The projection is in UTM zone 11 or 12 with an ellipsoid of WGS84. Figure 4 shows an example of the original path images used for tiling the NTS 74L dataset. Table 1 lists the scenes that overlay the NTS 74L area. Figure 5 shows the spatial locations of the scenes overlaying NTS 74L. Many of these scenes were used for producing the NTS 74L orthorectified and principal component image datasets included on the CD.

Figure 4. One of the original SGF scene images used for tiling the NTS 74L dataset: scene MO199208 of Standard Beam Mode 1 descending. RADARSAT data © Canadian Space Agency/Agence spatiale canadienne 1999, processed and distributed by RADARSAT International.
<table>
<thead>
<tr>
<th>Scene ID</th>
<th>Beam</th>
<th>Path</th>
<th>UL_LAT</th>
<th>UL_LONG</th>
<th>UR_LAT</th>
<th>UR_LONG</th>
<th>LR_LAT</th>
<th>LR_LONG</th>
<th>LL_LAT</th>
<th>LL_LONG</th>
</tr>
</thead>
</table>
Figure 5. The scenes overlaying NTS 74L.
3.2 Orthorectification Process

The original RADARSAT-1 path images are orthorectified by RGI contracted by AGS. The individual orthorectified RADARSAT-1 images have no filtering nor any radiometric processing applied to them. Radiometrically they are identical to the original images. Orthorectification is performed using digital elevation data provided by the Resource Data Division (RDD) of the Alberta Department of Sustainable Development. The digital elevation data used has a 100 m resolution. Ground control points (GCPs) are collected from 1:20 000 Alberta Access Vectors and an Alberta mosaic of orthorectified Indian remote sensing satellite (IRS) images, which are also provided by RDD. An average GCP root mean-square error of 20 m is obtained. The image file is in ER Mapper format and projected to UTM zone 11 or 12 with a datum of NAD83. The data remain in unsigned, 16-bit integer format, and the pixel size remains at 12.5 m. Figure 6 is an example of the orthorectified images used for tiling the NTS 74L dataset.

Figure 6. One of the orthorectified scene images used for tiling the NTS 74L dataset: scene MO199208 of Standard Beam Mode 1 descending.
3.3 Mosaic (Tiling) Process

The orthorectified images are tiled to 25 NTS map areas of Standard Beam Mode S1/S7 ascending/descending. For the S1 mosaics, the near-nadir sides of the images have been favoured in the mosaic process. For the S7 mosaics, the off-nadir sides of the images have been favoured. This maximizes the incidence angle difference between the S1 and S7 mosaics. Radiometric differences between adjacent images are minimized using two-dimensional, piecewise linear gain and offset adjustment functions, which are interactively adjusted to achieve an optimum balance. The balanced mosaics are then clipped to 1:250 000 NTS tiles. The NTS tile image file is in ER Mapper format and projected to UTM zone 11 or 12 with a datum of NAD83. The data are converted into unsigned, 8-bit integer format, and the pixel size remains at 12.5 m. Figure 7 is a pseudocolour composite of the orthorectified and tiled NTS 74L image dataset.

Figure 7. Pseudocolour composite of orthorectified NTS 74L image dataset of Standard Beam Mode S1/S7 ascending/descending beam positions (RGB=S7d, S7a, S1d).
3.4 Principal Component Analysis

NTS images of four beam positions (S1 ascending/descending and S7 ascending/descending) for the same NTS map area are used as input channels for principal component analysis (PCA). This results in 25 PCA image datasets; each contains four layers for the PC1, PC2, PC3 and PC4 images for the same NTS map area. During the PCA, the S7 ascending image is used to mask the lakes so as to remove the lakes from the calculation of the covariance eigenvectors. The S1 ascending image is multiplied by 1.35, and the S1 descending image is multiplied by 1.60 so as to match the means of the S1 and S7 ascending/descending images. The covariance eigenvectors are determined using a 10 000 columns by 20 000 rows window of the four beam mode images. The window is located between UTM zone 12 NAD 83 coordinates 339313 E to 464319 E and 6414500 N to 6164502 N. An ER Mapper std_dev_1.6 filter is applied to each of the four beam position images. After PCA, a value of 11 000 was added to PC3 values and 5 000 to PC4 values to bring all of the image values into the positive range. The resultant image dataset is in ER Mapper format and projected to UTM zone 11 or 12 with a datum of NAD83. The dataset was converted into unsigned, 8-bit integer format, and the pixel size remains at 12.5 m. Figure 8 is a pseudocolour composite of the principal component dataset for NTS 74L.

Figure 8. Pseudocolour composite of NTS 74L image dataset of principal component PC1, PC2, PC3 and PC4 (RGB=PC2, PC1, PC3).
3.5 Additional Resampled Images and Maps

For a wider scope of users, including non-GIS or inexperienced professionals to use the data, single-band images in GeoTIFF format were created from each band of the orthorectified and PCA image datasets mentioned above. This results in 8 images for each NTS map area. They are: (1) S1 ascending, (2) S1 descending, (3) S7 ascending, (4) S7 descending, (5) PC1, (6) PC2, (7) PC3 and (8) PC4 images. The GeoTIFF images are in the same projection as the orthorectified and PCA image datasets, but have been re-sampled into 27 m pixel size in order to reduce file size. They can be used with other GIS data to generate maps of specific interests to the user.

In addition, simple maps for these images were created. This results in 8 maps for each NTS map area. These maps are included on the two accompanying CDs as Figures 9 to 16. They can be printed or plotted, depending on the users’ software and output capability, and each map includes some general tips for interpretation.

4 Conclusion

The image datasets for NTS 74L contain two sets of data: orthorectified RADARSAT-1 image dataset with images of four beam mode positions: S1/S7 beam modes and ascending/descending paths; and principal component image dataset containing images of PC1, PC2, PC3 and PC4, which are derived from the orthorectified image dataset. The imagery is obtained through orthorectification and mosaicking of the RADARSAT-1 path images covering NTS 74L. Additional single-band images in GeoTIFF format were also created. The various image datasets included herein can be used for a wide range of applications, including forestry, land cover classification, soil moisture mapping, hydrology, geomorphology and geology for the NTS 74L map area.

5 References

The RADARSAT-1 satellite, launched by Canada in 1995, is an active, microwave-based sensor that sends its own microwave signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT, by employing variable beam modes (i.e., differing incidence angles, scene coverage and resolutions) and look directions (i.e., north looking, east looking, west looking or south looking, north ascending, south ascending, east descending or west descending), hence the opportunity exists for acquiring a number of separate radar signals, which then can either be evaluated individually or combined statistically in various ways to produce additional information.

The quality of the radar backscatter signal is directly related to ground topography, dielectric properties and surface roughness of the moisture content of vegetation or sediment surface materials to a very shallow depth.

As part of their regional mapping strategy, the Alberta Geological Survey acquired RADARSAT-1 images over northern Alberta descending (70 scenes), Standard Beam 7 (S7) ascending (65 scenes) and S7 descending (68 scenes). The resolution of each of these datasets is about 25 m (that is, the resulting radar responses reflect or encompass a square cell that is areally about 25 m on each side). These geos were individually orthorectified and then tiled into 25,000 m cells. Principal Component Analysis (PCA) of the data from the S1A, S1D, S7A and S7D images was then performed, which generates resultant principal component images, which are then tiled into 25,000 m cells, Digitally Orthorectified Radarsat Images (DORIs) were also generated. These were then processed using Principal Component Analysis (PCA).

As noted above, radar backscatter is affected by vegetation type, moisture and surface roughness. It is also dependent on the incidence angle and look direction of the radar beam. With respect to vegetation, much of northern Alberta is covered by boreal forest. As a result, Standard Beam 1 images tend to show more variation of tones. The same terrain may appear different in tone when imaged at different incident angles and in different look directions.

As a result, northern Alberta is covered by boreal forest. As a result, Standard Beam 1 images tend to show more variation of tones. The same terrain may appear different in tone when imaged at different incident angles and in different look directions.

Some general tips for interpreting the Figures 9 to 12 images are provided below, but these are generalizations and intended only as an aid to interpretation. They do not represent unique interpretation methods for the eight 'simple maps' of RADARSAT-1 imagery (Figures 9 to 16) or PCA imagery (Figures 13 to 16).

1. Standing water, when not disturbed by a strong wind, reflects almost all the incident microwave radiation away from the sensor, resulting in a black or dark tone. In contrast, a strong wind would cause patches of lighter tone on the normally dark response from standing water. Vegetation, which tends to be an isolating material, typically results in a light tone. As a result, Standard Beam 1 images tend to show more variation of tones.

4. Soils with a high water content reflect radar energy better than those with low water content; hence the vegetation, moisture and surface roughness response. As well, wetlands with areas of grass or moss interspersed with trees (e.g., black spruce) can also show up as a mottled or 'salt-and-pepper' texture.

5. For the same reason, calibration targets that are fully vegetated also have a very uniform radar response. Vegetation, moisture and surface roughness, it is difficult to provide unique interpretation methods for the eight 'simple maps' of RADARSAT-1 imagery (Figures 9 to 16) or PCA imagery (Figures 13 to 16).
Introduction

The RADARSAT-1 satellite, launched by Canada in 1995, is an active, microwave-based sensor that sends its own microwave signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT, and IRS, in that it is not affected by vegetation, snow, and smoke, and can operate through cloud cover. As part of their regional mapping strategy, the Alberta Geological Survey acquired RADARSAT-1 images over northern Alberta (north of 55 degrees north latitude) with the following four beam positions: Standard Beam 1 (S1) ascending (71 scenes), S1 descending (73 scenes), Standard Beam 7 (S7) ascending (69 scenes), and S7 descending (69 scenes). The image cell size is 25 m. Each image is a composite of a few scenes, which were individually orthorectified and then tiled into 25,000 m (2.5 km) square cells.

Four datasets were processed. These included

1. Orthorectified images from the four beam positions for each NTS map area (Figures 9 to 12).
2. The four Radarsat image datasets (i.e., S1A, S1D, S7A and S7D) for each NTS map area were processed using Principal Component Analysis (PCA). PCA is a statistical method that evaluates correlation among the signals from the S1A, S1D, S7A and S7D image data, and resulted in four PCA maps (Figures 13 to 16).

As noted above, radar backscatter is affected by vegetation type, moisture and surface roughness. It is also dependent on the incidence angle and look direction of the radar beam. With respect to vegetation, much of northern Alberta is covered by boreal forest, which has a great deal of variation in moisture content and density. Canopies with high moisture content reflect radar energy better than those with low water content; hence the latter appear in a lighter tone. Conifer versus deciduous trees without leaves show different texture and tones under certain combination of beam mode and look direction. In general, Standard Beam 1 images are more sensitive to soil and vegetation moisture than Standard Beam 7 images. As a result, Standard Beam 1 images tend to show more variation of tones. Hence the same area may have a differing response depending on the simple map or figure evaluated.

1. Standing water, when not disturbed by a strong wind, reflects almost all the incident microwave radiation away from the sensor, resulting in a black or dark tone. In contrast, a strong wind would cause patches of lighter tone on the normally dark response from standing water.
2. Vegetation moisture content reflects radar energy better than those with low water content; hence the latter appear in a lighter tone.
3. Canopies with high moisture content reflect radar energy better than those with low water content; hence the latter appear in a lighter tone.
4. Conifer versus deciduous trees without leaves show different texture and tones under certain combination of beam mode and look direction.

9. In general, Standard Beam 1 images are more sensitive to soil and vegetation moisture than Standard Beam 7 images. As a result, Standard Beam 1 images tend to show more variation of tones. Hence the same area may have a differing response depending on the simple map or figure evaluated.

10. The response differs markedly for lakes versus land, but the radar moisture signal on land is complex because it reflects varying moisture content in both the vegetation and surface soils. With respect to surface roughness, this also is a complex response, but typically associated with the soil. As well, Principal Component Analysis of the RADARSAT-1 imagery acts to add more complexity to the interpretation process. Finally, because each tiled 1:250,000 scale map area image is a composite, usually of a few individual orthorectified RADARSAT-1 images, there can be in places a seemingly abrupt change in tone or texture; these normally occur across a linear or curvilinear boundary that reflects the join of the images. Therefore, because of these complicated interactions between the radar energy and the vegetation, it is difficult to provide unique interpretation methods for the eight 'simple maps' of RADARSAT-1 imagery (Figures 9 to 16) or PCA imagery (Figures 13 to 16).

Some general tips for interpreting the Figures 9 to 12 images are provided below, but these are generalizations and intended only for assisting less experienced users to browse the image or evaluate variations on the printed map.

1. Standing water, when not disturbed by a strong wind, reflects almost all the incident microwave radiation away from the sensor, resulting in a black or dark tone. In contrast, a strong wind would cause patches of lighter tone on the normally dark response from standing water.
2. Vegetation moisture content reflects radar energy better than those with low water content; hence the latter appear in a lighter tone.
3. Canopies with high moisture content reflect radar energy better than those with low water content; hence the latter appear in a lighter tone.
4. Conifer versus deciduous trees without leaves show different texture and tones under certain combination of beam mode and look direction.
5. In general, Standard Beam 1 images are more sensitive to soil and vegetation moisture than Standard Beam 7 images. As a result, Standard Beam 1 images tend to show more variation of tones. Hence the same area may have a differing response depending on the simple map or figure evaluated.
6. The response differs markedly for lakes versus land, but the radar moisture signal on land is complex because it reflects varying moisture content in both the vegetation and surface soils. With respect to surface roughness, this also is a complex response, but typically associated with the soil. As well, Principal Component Analysis of the RADARSAT-1 imagery acts to add more complexity to the interpretation process. Finally, because each tiled 1:250,000 scale map area image is a composite, usually of a few individual orthorectified RADARSAT-1 images, there can be in places a seemingly abrupt change in tone or texture; these normally occur across a linear or curvilinear boundary that reflects the join of the images. Therefore, because of these complicated interactions between the radar energy and the vegetation, it is difficult to provide unique interpretation methods for the eight 'simple maps' of RADARSAT-1 imagery (Figures 9 to 16) or PCA imagery (Figures 13 to 16).

Some general tips for interpreting the Figures 9 to 12 images are provided below, but these are generalizations and intended only for assisting less experienced users to browse the image or evaluate variations on the printed map.
The RADARSAT-1 satellite, launched by Canada in 1995, is an active, microwave-based sensor that sends its own microwave signals to the Earth. In contrast, IRS, which collects data at visible and infrared frequencies and relies on reflected sunlight from the Earth. RADARSAT-1 employs variable beam modes (i.e., differing incidence angles, scene coverage and resolutions) and look directions, hence the opportunity exists for acquiring a number of separate radar signals, which then can either be evaluated individually or combined statistically in various ways to produce additional information.

The quality of the radar backscatter signal is directly related to ground topography, dielectric properties and surface roughness of the area being observed. In northern Alberta, with the following four beam positions: Standard Beam 1 (S1) ascending (71 scenes), S1 descending (70 scenes), Standard Beam 7 (S7) ascending (65 scenes) and S7 descending (68 scenes). The resolution of each of these images is 500000 m.

As noted above, radar backscatter is affected by vegetation type, moisture and surface roughness. It is also dependent on the incidence angle and look direction of the radar beam. With respect to vegetation, much of northern Alberta is covered by boreal forest, and the water content in both the vegetation and surface soils. With respect to surface roughness, this also is a complex response, but refers to 'roughness' at the centimetre scale, and results from a combination of both the roughness of the vegetation canopy and of the surface roughness.

The same terrain may appear different in tone when imaged at different incident angles and in different look directions, and for the eight 'simple maps' of RADARSAT-1 imagery (Figures 9 to 16) or PCA imagery (Figures 13 to 16). Some general tips for interpreting the Figures 9 to 12 images are provided below, but these are generalizations and intended only as a guide to identification of the various surface features. With respect to vegetation, moisture and surface roughness, there are a number of interactions that must be taken into account.

1. Water is a key determinant of the radar backscatter response from the Earth's surface. In general, standing water absorbs and reflects little of the radar signal, resulting in a black or dark tone. In contrast, a strong wind would cause patches of lighter tone on the normally dark response from standing water.
2. Forest canopies generally show up with a more coarse texture than grasslands, which reflects their greater variability in nature of the underlying geomorphology, the surficial geology and soil type, and the vegetation type, extent of vegetative coverage and canopy configuration. In turn, these factors also influence the amount of moisture in the soil, and the type of vegetation that is present, across a linear or curvilinear boundary that reflects the join of the images. Therefore, because of these complicated interactions between the radar energy and the vegetation, moisture and surface roughness, the responses from vegetation, moisture and surface roughness can be quite different.

Acknowledgements:

Digital cartography is made by N.L. Blundon and S. Mei. The RADARSAT-1 principal component images are processed by RGI Calgary. The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, as to the correctness, accuracy, completeness, or reliability of this publication. When using this material, the user does so at his/her own risk.
Introduction

RADARSAT-1 is a polar-orbiting synthetic aperture radar (SAR) satellite that includes a 74 km radar footprint and is useful in the investigation of a wide range of natural resources and environmental conditions. The satellite was launched in February 1995 and operates over a period of approximately 7 years. It is in a near-polar orbit of 705 km, with a 98° inclination and an orbital period of 106 minutes. The instrument generates data in the C-band (5.3 GHz) and includes four imager modes (S1-S4) with different modes of operation. These modes are used to collect data at different incident angles, scene coverage and resolutions, and look directions (e.g., east looking and descending or west looking). In addition, RADARSAT-1 employs variable beam modes (i.e., differing incidence angles, scene coverage and resolutions) and look directions. The images generated by these imaging modes are used for different applications, such as forest resource inventory, environmental monitoring, and land use and land cover assessment.

As part of their regional mapping strategy, the Alberta Geological Survey acquired RADARSAT-1 images over northern Alberta (Figures 13 to 16). The strategy of acquiring S1 and S7 imagery was done to contrast the radar responses based on two incidence angles and two look directions. The images were obtained in a dry autumn (September to December 1999) and, thus, provided ideal conditions of no to little deciduous foliage or snow. The acquired scene images were individually 1:250,000 scale NTS map areas that cover all of northern Alberta north of latitude 55°N. This results in four RADARSAT-1 images for each NTS map area. The images were processed using Principal Component Analysis (PCA). PCA is a statistical method that evaluates correlation among images for each NTS map area. The first four principal components for each NTS map area were then used to produce four simple PCA maps (Figures 13 to 16).

For forest, but there also exist farm lands, wetlands and some other settings with differing vegetation types. With respect to moisture, the response differs markedly for lakes versus land, but the radar moisture signal on land is complex because it reflects varying surface roughness response. As well, Principal Component Analysis of the RADARSAT-1 imagery acts to add more complexity to the interpretation process. Finally, because each tiled 1:250,000 scale map area image is a composite, usually of a few individual orthorectified RADARSAT-1 images, there can be in places a seemingly abrupt change in tone or texture; these normally occur across a linear or curvilinear boundary that reflects the join of the images. Therefore, because of these complicated interactions, some general tips for interpreting the Figures 9 to 12 images are provided below, but these are generalizations and intended only for assisting less experienced users to browse the image or evaluate variations on the printed map.

1. Snow and ice tend to show up with a black or dark tone.
2. A strong wind would cause patches of lighter tone on the normally dark response from standing water.
3. Slopes facing toward the sensor are usually lighter than slopes facing away from the sensor.
4. Moist soils are often associated with a more coarse texture than grasslands, which reflects their greater variability in surface roughness response. As well, wetlands with areas of grass or moss interspersed with trees (e.g., black spruce) can also show up as a mottled or 'salt-and-pepper' texture.
5. Canopies with higher vegetation, moisture, and surface roughness tend to show up brighter than those with lower vegetation, moisture, and surface roughness.
6. Canopies with higher vegetation, moisture, and surface roughness tend to show up brighter than those with lower vegetation, moisture, and surface roughness.
7. Urban buildings, cars, fences, bridges, etc., tend to result in bright signatures.
8. The same terrain may appear different in tone when imaged at different incident angles and in different look directions.

Resources GIS and Imaging (now renamed as PhotoSat). Additional image processing is made by S. Mei. Reg Olson and Rick Richardson are thanked for beneficial and constructive review.

Disclaimer:

The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, with respect to the content of materials provided in this publication, its accuracy or completeness. Use of such materials is at the risk of the user. Neither the Alberta Geological Survey nor any of its employees or contractors shall be liable for any loss, damage or expense arising from any reliance on the information contained in this publication or any part thereof. The information contained in this publication is for general information only and is not intended for, nor shall it be used for, any commercial, financial, legal, or technical decisions.
RADARSAT-1

RADARSAT-1 signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT, which then can either be evaluated individually or combined statistically in various ways to produce additional information.

The terrain being imaged. As a result, RADARSAT-1 images are well suited for mapping geological structure, geomorphology and the moisture content of vegetation or sediment surface materials to a very shallow depth.

The Second Principal Component (PC2) image (Figure 14) provides information about the degree of land cover type and vegetation density. For example, well-forested lands show up as darker tones, whereas areas of burn and grassy or barren lands show... Further, open black spruce forest is characterized by darker tones; closed pine forest is displayed in mid-range tones, and areas of dunes and exposed soil show up as the lightest tones. Finally, areas dominated by grass or little vegetation or of burned forest, show up as light- to medium-grey tones.

The Third Principal Component (PC3) image (Figure 15) highlights 'surface roughness'; hence it reflects topographic effects and scattering response that are not noted from the other three PCA images. Interestingly, open black spruce forest usually appears to display a lighter tone on PC4 images. Such differences on PC4 may reflect a combination of vegetation density and morphology.

Acknowledgements:

Digital cartography is made by N.L. Blundon and S. Mei. The RADARSAT-1 principal component images are processed by RGI. The Alberta Geological Survey and its employees and contractors make no warranty, guarantee or representation, express or implied, as to the accuracy, fitness for any purpose, merchantability, or quality of this publication or its appropriateness or applicability to any user’s individual circumstances. No responsibility is assumed by the Alberta Geological Survey for any loss, damage, or liability caused or alleged to have been occasioned by this publication or the information or advice contained therein. Users are advised to verify the information contained herein and to consult the appropriate governmental agency or other qualified source of information. Any use of trade names, commercial products or organizations, or political entities, is for descriptive purposes only and does not imply endorsement by the Alberta Geological Survey.

When using information from this publication in other publications or presentations, due acknowledgement should be given to the Alberta Energy Regulator.
The RADARSAT-1 satellite, launched by Canada in 1995, is an active, microwave-based sensor that sends its own microwave signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT signals, which then can either be evaluated individually or combined statistically in various ways to produce additional information.

The quality of the radar backscatter signal is directly related to ground topography, dielectric properties and surface roughness of the terrain being imaged. As a result, RADARSAT-1 images are well suited for mapping geological structure, geomorphology and descending (70 scenes), Standard Beam 7 (S7) ascending (65 scenes) and S7 descending (68 scenes). The resolution of each of these datasets is about 25 m (that is, the resulting radar responses reflect or encompass a square cell that is areally about 25 m on each side). The strategy of acquiring S1 and S7 imagery was done to contrast the radar responses based on two incidence angles and two look directions. The images were obtained in a dry autumn (September to December 1999) and, thus, provided ideal conditions of no to little deciduous foliation or snow. The acquired scene images were processed in a Principal Component Analysis (PCA) method which refers to 'roughness' at the centimetre scale, and results from a combination of both the roughness of the vegetation canopy and of the exposed soil.

As noted above, radar backscatter is affected by vegetation type, moisture and surface roughness. It is also dependent on the moisture content in both the vegetation and surface soils. With respect to surface roughness, this also is a complex response, but refers to 'roughness' at the centimetre scale, and results from a combination of both the roughness of the vegetation canopy and of the exposed soil. As a result, surface roughness is related to the interpretation process. Finally, because each tiled 1:250,000 scale map area image is a composite, usually between the radar energy and vegetation, moisture and surface roughness, it is necessary to consider these three factors when interpreting the images.

The First Principal Component (PC1) image (Figure 13) shows a range of brightness and texture that highlights features associated with differences in vegetation type. For example, aspen or exposed soil appears to have a brighter tone with variable texture. Areas of open black spruce tend to show up as mid tone to dark aspen or exposed soil.

The Second Principal Component (PC2) image (Figure 14) provides information about the degree of land cover type and vegetation density. For example, well-forested lands show up as darker tones, whereas areas of burn and grassy or barren lands show up as lighter tones. Further, open black spruce forest is characterized by darker tones; closed pine forest is displayed in mid-range tones, and areas of dunes and exposed soil show up as the lightest tones. Finally, areas dominated by grass or little vegetation or of burned forest, show up as light- to medium-grey tones.

The Third Principal Component (PC3) image (Figure 15) shows some added differences in vegetation surface and volume scattering response that are not noted from the other three PCA images. Interestingly, open black spruce forest usually appears to be lighter than other forest types. As well, the Third Principal Component image tends to accentuate the differences in the vegetation density, while still preserving much of the grey scale character provided by the First Principal Component image.

The Fourth Principal Component (PC4) image (Figure 16) shows some added differences in vegetation surface and volume scattering response that are not noted from the other three PCA images. Interestingly, open black spruce forest usually appears to be lighter than other forest types. As well, the Fourth Principal Component image tends to accentuate the differences in the vegetation density, while still preserving much of the grey scale character provided by the First Principal Component image.

Disclaimer:
Digital cartography is made by N.L. Blundon and S. Mei. The RADARSAT-1 principal component images are processed by RGI Resources GIS and Imaging (now renamed as PhotoSat). Additional image processing is made by S. Mei. Reg Olson and Rick Richardson are thanked for beneficial and constructive review.
Introduction

RADARSAT-1 is a polar orbiting radar satellite which is designed to image the Earth’s surface in a manner identical to optical systems such as LANDSAT, SPOT and IRS. However, unlike optical sensors which collect data at visible and infrared frequencies and rely on reflected sunlight from the Earth, RADARSAT-1 operates at C- and X-bands, and it retrieves its data by emitting microwave signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT and IRS, which collect data at visible and infrared frequencies and rely on reflected sunlight from the Earth. In addition, RADARSAT-1 images are well suited for mapping geological structure, geomorphology and vegetation type.

As part of their regional mapping strategy, the Alberta Geological Survey acquired RADARSAT-1 images over northern Alberta (north of 55° latitude) with the following four beam positions: Standard Beam 1 (S1) ascending (71 scenes), S1 descending (10 scenes), S7 ascending (5 scenes), S7 descending (7 scenes). The strategy of acquiring S1 and S7 imagery was done to contrast the radar responses based on two incidence angles and two look angles. The quality of the radar backscatter signal is directly related to ground topography, dielectric properties and surface roughness of the terrain being imaged. As a result, RADARSAT-1 images are well suited for mapping geological structure, geomorphology and vegetation type.

These datasets are about 25 m (that is, the resulting radar responses reflect or encompass a square cell that is areally about 25 m on each side). The strategy of acquiring S1 and S7 imagery was done to contrast the radar responses based on two incidence angles and two look angles. The First Principal Component (PC1) image (Figure 13) shows a range of brightness and texture that highlights features associated with geological structure, geomorphology and vegetation type. Areas of closed Aspen, closed Pine, open deciduous vegetation and grasslands are clearly visible. The Second Principal Component (PC2) image (Figure 14) provides information about the degree of land cover type and vegetation density. For example, well-forested lands show up as darker tones, whereas areas of burn and grassy or barren lands show up as lighter tones. Further, open black spruce forest is characterized by darker tones; closed pine forest is displayed in mid-range tones, and open deciduous forest is shown as lighter tones.

The Third Principal Component (PC3) image (Figure 15) is useful for identifying linear topographic features. Further, areas of outwash, dune fields, stream alluvium and ice contact deposits usually exhibit unique textural characteristics, which can act to assist in the preliminary mapping or differentiation of surficial materials.

The Fourth Principal Component (PC4) image (Figure 16) shows some added differences in vegetation surface and volume scattering response that are not noted from the other three PCA images. Interestingly, open black spruce forest usually appears to be characterized by darker tones; closed pine forest is displayed in mid-range tones, and open deciduous forest is shown as lighter tones.
The RADARSAT-1 satellite, launched by Canada in 1995, is an active, microwave-based sensor that sends its own microwave signals down to the Earth and processes the signals that it receives back. It differs from optical sensors, such as LANDSAT, SPOT and IRS, which collect data at visible and infrared frequencies and rely on reflected sunlight from the Earth. In addition, RADARSAT-1 employs variable beam modes (i.e., differing incidence angles, scene coverage and resolutions) and look directions (i.e., north looking, east looking, west looking or east looking and descending or west looking), hence the opportunity exists for acquiring a number of separate radar signals from the S1A, S1D, S7A and S7D images for each NTS map area (Figures 9 to 12). As well, the four Radarsat image datasets (i.e., S1A, S1D, S7A and S7D) for each NTS map area were processed using Principal Component Analysis (PCA). PCA is a statistical method that generates resultant principal component images for each NTS map area. The first four principal components for each NTS map area were then used to produce four simple PCA maps (Figures 13 to 16).

As noted above, radar backscatter is affected by vegetation type, moisture and surface roughness. It is also dependent on the incidence angle and look direction of the radar beam. With respect to vegetation, much of northern Alberta is covered by boreal vegetation, with differences in vegetation type, moisture and surface roughness. Areas of closed Aspen, closed Pine, open deciduous vegetation, wetlands and areas of dunes and exposed soil appear to have a brighter tone with variable texture. Areas of open black spruce tend to show up as mid tone to dark grey. Shrubby and grassy wetlands also appear as dark areas. In general, darker tones tend to reflect areas of increased moisture (north of 55 degrees north latitude) with the following four beam positions: Standard Beam 1 (S1) ascending (71 scenes), S1 descending (70 scenes), Standard Beam 7 (S7) ascending (65 scenes) and S7 descending (68 scenes). The resolution of each of the four side). The strategy of acquiring S1 and S7 imagery was done to contrast the radar responses based on two incidence angles from the four beam positions for each NTS map area (Figures 9 to 12). As well, Principal Component Analysis of the RADARSAT-1 imagery acts to add more complexity to vegetation, moisture and surface roughness. Areas of closed Aspen, closed Pine, open deciduous vegetation, wetlands and areas of dunes and exposed soil show up as the lightest tones. Finally, areas dominated by grass or little vegetation or of burned forest, show up as light- to medium-grey tones. The Third Principal Component (PC3) image (Figure 15) highlights 'surface roughness'; hence it reflects topographic effects and surface texture of the ground or vegetation canopy. In fact, the discrimination of topographic features using the PC3 image is superior to any other optical commercial satellite imagery, with similar spatial resolution. As a result, areas of drumlins, sand dunes, and areas of dunes and exposed soil show up as the lightest tones. Finally, areas dominated by grass or little vegetation or of burned forest, show up as light- to medium-grey tones. The Fourth Principal Component (PC4) image (Figure 16) shows some added differences in vegetation surface and volume, displaying a lighter tone on PC4 images. Such differences on PC4 may reflect a combination of vegetation density and morphology.